On independent domination numbers of grid and toroidal grid directed graphs

author

Abstract:

A subset $S$ of vertex set $V(D)$ is an {em indpendent dominating set} of $D$ if $S$ is both an independent and a dominating set of $D$. The {em indpendent domination number}, $i(D)$ is the cardinality of the smallest independent dominating set of $D$. In this paper we calculate the independent domination number of the { em cartesian product} of two {em directed paths} $P_m$ and $P_n$ for arbitraries $m$ and $n$. Also, we calculate the independent domination number of the { em cartesian product} of two {em directed cycles} $C_m$ and $C_n$ for $m, n equiv 0 ({rm mod} 3)$, and $n equiv 0 ({rm mod} m)$. There are many values of $m$ and $n$ such that $C_m Box C_n$ does not have an independent dominating set.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Independent domination in directed graphs

In this paper we initialize the study of independent domination in directed graphs. We show that an independent dominating set of an orientation of a graph is also an independent dominating set of the underlying graph, but that the converse is not true in general. We then prove existence and uniqueness theorems for several classes of digraphs including orientations of complete graphs, paths, tr...

full text

On the Total Domination Subdivision Numbers of Grid Graphs

A set S of vertices in a graph G(V,E) is called a total dominating set if every vertex v ∈ V is adjacent to an element of S. The total domination number of a graph G denoted by γt(G) is the minimum cardinality of a total dominating set in G. Total domination subdivision number denoted by sdγt is the minimum number of edges that must be subdivided to increase the total domination number. Here we...

full text

Eternal domination on 3 × n grid graphs

In the eternal dominating set problem, guards form a dominating set on a graph and at each step, a vertex is attacked. After each attack, if the guards can “move” to form a dominating set that contains the attacked vertex, then the guards have successfully defended against the attack. We wish to determine the minimum number of guards required to successfully defend against any possible sequence...

full text

Total domination number of grid graphs

We use the link between the existence of tilings in Manhattan metric with {1}-bowls and minimum total dominating sets of Cartesian products of paths and cycles. From the existence of such a tiling, we deduce the asymptotical values of the total domination numbers of these graphs and we deduce the total domination numbers of some Cartesian products of cycles. Finally, we investigate the problem ...

full text

Computing the Domination Number of Grid Graphs

Let γm,n denote the size of a minimum dominating set in the m× n grid graph. For the square grid graph, exact values for γn,n have earlier been published for n 6 19. By using a dynamic programming algorithm, the values of γm,n for m,n 6 29 are here obtained. Minimum dominating sets for square grid graphs up to size 29× 29 are depicted. ∗Supported by the Academy of Finland, Grant No. 132122 and ...

full text

Upper bounds for the domination numbers of toroidal queens graphs

We determine upper bounds for γ(Qn) and i(Qn), the domination and independent domination numbers, respectively, of the graph Qn obtained from the moves of queens on the n× n chessboard drawn on the torus.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 1

pages  71- 77

publication date 2019-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023